MathIsimple

Lesson 4-1: Inverse Trigonometric & Hyperbolic Functions

Master inverse trigonometric functions (arcsin, arccos, arctan) and hyperbolic functions (sinh, cosh, tanh) with calculus rules, identities, and real-world applications.

Learning Objectives

  • Recall domains and principal ranges for arcsin, arccos, and arctan.
  • Differentiate and integrate expressions involving inverse trig and hyperbolic functions.
  • Use identities to simplify algebra and evaluate limits.
  • Model real contexts (e.g., catenary) with hyperbolic functions.

Core Formulas

Inverse Trigonometric Derivatives

ddxarcsinx=11x2\frac{d}{dx}\arcsin x = \frac{1}{\sqrt{1-x^2}}
ddxarccosx=11x2\frac{d}{dx}\arccos x = -\frac{1}{\sqrt{1-x^2}}
ddxarctanx=11+x2\frac{d}{dx}\arctan x = \frac{1}{1+x^2}

Hyperbolic Function Derivatives

ddxsinhx=coshx\frac{d}{dx}\sinh x = \cosh x
ddxcoshx=sinhx\frac{d}{dx}\cosh x = \sinh x
ddxtanhx=sech2x=1tanh2x\frac{d}{dx}\tanh x = \text{sech}^2 x = 1 - \tanh^2 x

Inverse Trigonometric Functions

Definitions and Domains

arcsin x

Domain: [1,1][-1,1]

Range: [π/2,π/2][-\pi/2, \pi/2]

arccos x

Domain: [1,1][-1,1]

Range: [0,π][0, \pi]

arctan x

Domain: R\mathbb{R}

Range: (π/2,π/2)(-\pi/2, \pi/2)

Key Identities

arcsinx+arccosx=π2 for x[1,1]\arcsin x + \arccos x = \frac{\pi}{2} \text{ for } x \in [-1,1]
arctanx+arctan1x=π2 for x>0\arctan x + \arctan\frac{1}{x} = \frac{\pi}{2} \text{ for } x > 0

Hyperbolic Functions

Definitions

sinhx=exex2\sinh x = \frac{e^x - e^{-x}}{2}
coshx=ex+ex2\cosh x = \frac{e^x + e^{-x}}{2}
tanhx=sinhxcoshx\tanh x = \frac{\sinh x}{\cosh x}

Fundamental Identity

cosh2xsinh2x=1\cosh^2 x - \sinh^2 x = 1

Worked Examples

Example 1: Derivative of Inverse Function

Find the derivative of f(x)=x2arcsinxf(x) = x^2 \arcsin x.

Solution:

Using product rule:

f(x)=2xarcsinx+x211x2f'(x) = 2x \arcsin x + x^2 \cdot \frac{1}{\sqrt{1-x^2}}
=2xarcsinx+x21x2= 2x \arcsin x + \frac{x^2}{\sqrt{1-x^2}}

Example 2: Catenary Curve

A hanging chain forms a catenary curve described by y=acoshxay = a \cosh\frac{x}{a} where aa is a constant.

Find the derivative:

dydx=asinhxa1a=sinhxa\frac{dy}{dx} = a \sinh\frac{x}{a} \cdot \frac{1}{a} = \sinh\frac{x}{a}

Practice Problems

Problem 1

Find the derivative of f(x)=arctan(2x)f(x) = \arctan(2x).

f(x)=21+(2x)2=21+4x2f'(x) = \frac{2}{1+(2x)^2} = \frac{2}{1+4x^2}

Problem 2

Evaluate dx1x2\int \frac{dx}{\sqrt{1-x^2}}.

dx1x2=arcsinx+C\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C

Key Takeaways

  • Inverse trigonometric functions have restricted domains and ranges for uniqueness.
  • Hyperbolic functions are defined using exponential functions and have useful identities.
  • Both function types have specific derivative and integral rules that should be memorized.
  • These functions model real-world phenomena like hanging chains and oscillatory motion.
Continue to Lesson 4-2 for first-order differential equations.