MathIsimple

Lesson 6-2: Dynamic Systems (Differential/Difference)

Solve linear ODEs/difference equations, compute steady states, and interpret behavior.

Learning Objectives

  • Solve first-order linear ODEs and difference equations.
  • Find steady states and determine stability by parameters.
  • Interpret solutions in applications (bank accounts, migration, growth).
  • Recognize logistic dynamics and long-run behavior.

Continuous Linear Dynamics

x(t)=ax+bx'(t)=a x + b
  • If a<0a<0, the system converges to steady state x=b/ax^*=-b/a.
  • If a>0a>0, solutions grow unless bb counteracts.
x(t)=(x0+b/a)eatb/a(a0)x(t)=(x_0+ b/a) e^{a t} - b/a\quad (a\neq 0)

Discrete Linear Dynamics

xn+1=rxn+sx_{n+1}=r x_n + s
  • If r<1|r|<1, then xns/(1r)x_n\to s/(1-r).
  • If r>1|r|>1, then xn|x_n| diverges (except measure-zero initial conditions).
xn=rn(x0s/(1r))+s/(1r)(r1)x_n=r^n (x_0 - s/(1-r)) + s/(1-r)\quad (r\neq 1)

Logistic Dynamics

P(t)=rP(1P/K)P'(t)=r P (1-P/K)P(t)=K1+AertP(t)=\frac{K}{1+A e^{-r t}}

Worked Examples

Example 1: Bank Account

Solve x(t)=rx+s, x(0)=x0x'(t)=r x + s,\ x(0)=x_0.

Solution:

Using integrating factor erte^{-r t}, we get x(t)=(x0+s/r)erts/rx(t)=(x_0+s/r)e^{r t}-s/r (for r0r\neq 0). Steady state x=s/rx^*=-s/r.

Example 2: Migration

Iterate xn+1=1.03xn200x_{n+1}=1.03 x_n - 200 and observe convergence.

Solution:

Closed form xn=1.03n(x0s/(11.03))+s/(11.03)x_n=1.03^n (x_0 - s/(1-1.03)) + s/(1-1.03) with s=200s=200. Since 1.03>1|1.03|>1, magnitude diverges unless x0=s/(11.03)x_0=s/(1-1.03).

Practice

Problem 1

Solve x(t)=0.2x+3, x(0)=0x'(t)=-0.2 x + 3,\ x(0)=0 and find the steady state and half-life.

Solution: x(t)=15(1e0.2t)x(t)=15(1-e^{-0.2 t}), steady state 1515; half-life solves x(t)=7.5x(t)=7.5t=ln2/0.23.466t=\ln 2/0.2\approx 3.466.

Problem 2

Given xn+1=0.8xn+10, x0=0x_{n+1}=0.8 x_n + 10,\ x_0=0, compute x5x_5 and the limit.

Solution: Closed form xn=0.8n(x050)+50x_n=0.8^n (x_0-50)+50x5=0.85(50)+5032.768x_5=0.8^5(-50)+50\approx 32.768; limit 5050.

Problem 3

Continuous: solve x(t)=x5, x(0)=1x'(t)=x-5,\ x(0)=1 and determine tt with x(t)=4x(t)=4.

Solution: x(t)=(15)et+5=54etx(t)=(1-5)e^{t}+5=5-4 e^{t}4=54etet=1/4t=ln44=5-4 e^{t}\Rightarrow e^{t}=1/4\Rightarrow t=-\ln 4.

Problem 4

Discrete: for xn+1=1.1xn5x_{n+1}=1.1 x_n - 5, find the closed form and discuss behavior.

Solution: xn=1.1n(x0(50))50x_n=1.1^n (x_0-(-50)) - 50 diverges in magnitude since 1.1>1|1.1|>1.

Problem 5

Logistic: P(t)=0.6P(1P/100), P(0)=10P'(t)=0.6 P (1-P/100),\ P(0)=10. Estimate time to reach P=80P=80.

Solution: P(t)=1001+Ae0.6tP(t)=\frac{100}{1+A e^{-0.6 t}}, with A=1001010=9A=\frac{100-10}{10}=9. Solve 80=100/(1+9e0.6t)80=100/(1+9 e^{-0.6 t})e0.6t=136e^{-0.6 t}=\tfrac{1}{36}t=ln360.65.96t=\tfrac{\ln 36}{0.6}\approx 5.96.

Key Takeaways

  • Parameters govern stability and steady states.
  • Discrete steady state equals s/(1r)s/(1-r) when r<1|r|<1.
  • Logistic growth saturates at carrying capacity KK.
Continue to Lesson 6-3.