MathIsimple

Lesson 6-3: Cross-Disciplinary Modeling

Connect math to real problems in physics, economics, and biology.

Learning Objectives

  • Model projectile motion to compute range and maximum height.
  • Analyze supply–demand equilibrium shifts under taxation.
  • Study inter-species competition with coupled equations.
  • Translate real assumptions into solvable mathematical forms.

Core Models

No drag:x(t)=v0cosθtx(t)=v_0\cos\theta\, t,y(t)=v0sinθt12gt2y(t)=v_0\sin\theta\, t-\tfrac{1}{2} g t^2.Peak at vy=0v_y=0; eliminate tt for range.
DemandQd=abPQ_d=a-bP,SupplyQs=c+d(PT)Q_s=c+d(P-T);equilibrium solvesabP=c+d(PT)a-bP=c+d(P-T).
dN1dt=r1N1(1N1+αN2K1)\dfrac{dN_1}{dt}=r_1 N_1\Bigl(1-\tfrac{N_1+\alpha N_2}{K_1}\Bigr)
dN2dt=r2N2(1N2+βN1K2)\dfrac{dN_2}{dt}=r_2 N_2\Bigl(1-\tfrac{N_2+\beta N_1}{K_2}\Bigr)
Coexistence when K1/α>K2K_1/\alpha > K_2 and K2/β>K1K_2/\beta > K_1.

Worked Examples

Example 1: Projectile

Compute range and height for v0=20, θ=30°, g=9.8.

Solution:Range R=v02sin(2θ)g35.3mR=\dfrac{v_0^{2}\sin(2\theta)}{g}\approx 35.3\,\text{m};max height H=v02sin2θ2g5.1mH=\dfrac{v_0^{2}\sin^{2}\theta}{2g}\approx 5.1\,\text{m}.

Example 2: Taxed Market

Compute post-tax equilibrium with linear supply/demand.

Solution:Solve abP=c+d(PT)a-bP=c+d(P-T) P=ac+dTb+dP' = \dfrac{a-c+dT}{b+d}, Q=abPQ' = a-bP';incidence depends on slopes b,db,d.

Practice

Problem 1

Compute range RR and max height HH for v0=20v_0=20, θ=30\theta=30^\circ, g=9.8g=9.8.

Solution: R=v02sin(2θ)g35.3mR=\dfrac{v_0^{2}\sin(2\theta)}{g}\approx 35.3\,\text{m}, H=v02sin2θ2g5.1mH=\dfrac{v_0^{2}\sin^{2}\theta}{2g}\approx 5.1\,\text{m}.

Problem 2

Find post-tax equilibrium for Qd=1002PQ_d=100-2P, Qs=3(P5)50Q_s=3(P-5)-50.

Solution: P=100+50+352+3=33P'=\dfrac{100+50+3\cdot 5}{2+3}=33, Q=100233=34Q'=100-2\cdot 33=34.

Problem 3

Competition: with K1=100K_1=100, α=0.2\alpha=0.2, K2=80K_2=80, β=0.3\beta=0.3, check coexistence conditions.

Solution: K1/α=100/0.2=500>80K_1/\alpha=100/0.2=500>80, K2/β=80/0.3266.7>100K_2/\beta=80/0.3\approx 266.7>100 → coexistence.

Problem 4

For fixed v0v_0, show θ=45\theta=45^\circ maximizes R=v02sin(2θ)gR=\dfrac{v_0^{2}\sin(2\theta)}{g} (no drag).

Solution: maximize sin(2θ)\sin(2\theta) on [0,π/2][0,\pi/2] → attained at 2θ=π/22\theta=\pi/2, i.e., θ=π/4=45\theta=\pi/4=45^\circ.

Problem 5

Sensitivity: perturb α,β\alpha,\beta by ±10% and discuss how coexistence thresholds K1/α,K2/βK_1/\alpha, K_2/\beta change.

Solution: thresholds scale inversely with parameters; increasing α\alpha decreases K1/αK_1/\alpha linearly, etc.

Key Takeaways

  • Assumptions → equations → interpretations is the core modeling workflow.
  • Economics: taxes shift supply curves; welfare changes via area comparisons.
  • Biology: parameter thresholds separate coexistence from exclusion.
Return to Unit 6.